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Abstract

Vienna Fortran is a machine-independent language extension of Fortran, which
is based upon the Single-Program-Multiple-Data (SPMD) paradigm and allows the
user to write programs for distributed-memory systems using global addresses. The
language features focus mainly on the issue of distributing data across virtual processor
structures. In this paper, we discuss those features of Vienna Fortran that allow the
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1 Introduction

High-level language extensions to Fortran, which enable users to design programs for mas-

sively parallel computers much as they are accustomed to on a sequential machine, have been

the subject of intense discussion and research activity in recent months. Vienna Fortran [3, 4]

is one of several proposals put forth for such a set of language extensions [5, 6, 9, 12, 13].

A number of features of Vienna Fortran have since been adopted by the High Performance

Fortran Forum. One of these is the concept of static and dynamic distributions of arrays

in a program, although the details of these features are not the same in High Performance

Fortran (HPF).

The language extensions provided by Vienna Fortran allow the user to explicitly control

and specify the mapping of arrays across the underlying set of processors. The computation,

however, is still specified using a global address space which is independent of the distribution

of the data. That is, the programmer writes code using a single thread of control just as when

writing a sequential program. It is the compiler's responsibility to produce code suitable for

parallel execution.

The Vienna Fortran Compilation System generates code based on the SPMD (Single

Program Multiple Data) model, in which each processor executes essentially the same code,

but on a local data set. The mapping specification provided by the user determines the

ownership of data: a processor owns the data which is distributed to it, and stores it in its

local memory. In general, the compiler distributes work based upon the owner computes

rule: the processor performs the computation that defines data elements owned locally.

The compiler satisfies any non-local references required for this computation by inserting

communication statements to transfer the data.

The performance of the generated code is critically dependent on the data distribution

used for the program. A distribution is selected with the aims of spreading the workload

as evenly as possible across the processors, while preserving the locality of computation.

The appropriate distribution for a given code will depend on the characteristics of both

the program itself and that of the target architecture. The former includes factors such as

the data access patterns exhibited by the code, and the size of the data structures relative

to the number of processors used for a particular execution. The hardware factors include

the communication latency and bandwidth, the computation/communication ratio, and the

cache behavior of the machine.

If these factors can be determined statically, then the user can choose the "best" data

distribution at compile time. However, in situations where the program behavior is depen-

dent on runtime values, the choice of the appropriate distribution may be made at runtime
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if there is language support for dynamic distributions. Major uses of dynamic distribution

of data in programs are to:

"* improve the locality of data accesses in codes with identifiable computation phases,

"* write highly portable code in which the data distributions are selected on the basis of

input data and/or characteristics of the executing machine,

"* maintain a good load balance throughout the execution of a program for which the

workload varies significantly during the computation.

There are significant costs associated with using dynamic distribution of data. At run

time, this includes the cost of performing the actual data transfers and the cost of maintain-

ing runtime information about the current distribution. At compile time, a more rigorous

analysis must be performed to determine the distributions associated with a particular data

reference. In particular, the compiler has to generate code which allows for the possibility

that several data distributions may reach some statements. Despite these costs, the judi-

cious use of dynamic distribution features can reduce the overall communication costs of the

program while improving the load balance. Thus, the overall performance of the code may

improve even in the presence of the runtime overheads.

In this paper, we present the language features of Vienna Fortran which support dynamic
distribution of data. Section 2 describes the distribution facilities along with some control

constructs required for expressing code in the presence of redistribution of data. The compiler

and runtime support required for implementing these features is discussed in Section 3 while

their usefulness for scientific codes is considered in Section 4. The paper concludes with a

discussion of related work and some final remarks.

2 Distribution and Alignment in Vienna Fortran

The Vienna Fortran language extensions include features for the specification of the pro-

cessors which execute the program, the distribution of arrays to subsets of processors,

alignment between arrays, flexible mechanisms for the transfer of arguments to proce-

dures, and explicitly parallel asynchronous forall loops [4, 16]. In this section, we focus

only on the aspects relevant in the context of dynamic array distributions.

2.1 Basic Notation and Terminology

Each array A is associated with an index domain which we denote by IA. An index

mapping from an index domain I to an index domain J is a total function t : I -+ 1'

(J) - {0}, where P (J) denotes the powerset of J.
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A distribution of an array maps each array element to one or more processors which

become the owners of the element and, in this capacity, store the element in their local

memory. We model distributions by mappings between the associated index domains:

Definition 1 Let A denote an array, and R a processor array. An index mapping 6A from
JA to IR is called a distribution for A with respect to R.

An alignment establishes a relationship between elements of different arrays such that

corresponding elements are guaranteed to reside in the same processor:

Definition 2 Let A, B denote arbitrary arrays. An index mapping ac from IA to IB u

called an alignment for A with respect to B.

Given 6R, bA is determined as follows: For each i E JA

(i):= CONSTRUCT(aA6R) = UJRa(U)6•(j)

2.2 Specification of Distribution and Alignment

Distributions are specified in a program by distribution expressions. Each distribution

expression, for example (BLOCK, CYCLIC(K)), determines a class of distributions which is

called a distribution type. The application of a distribution type to a (data) array and a

processor section yields a distribution.

Simple distribution expressions specify mappings between one array dimension and one

processor dimension; they include the intrinsic distribution functions BLOCK, CYCLIC,

S.BLOCK, and BBLOCK. BLOCK distributes one array dimension to one processor di-

mension in evenly sized segments. CYCLIC maps elements of an array dimension in a

round-robin fashion to a dimension of the processor array. S.BLOCK and B.BLOCK per-

mit the specification of contiguous irregular blocks, introducing the concept of general block

distributions.

Distribution expressions associated with multi-dimensional arrays may be specified as a

list of simple distribution expressions, each one corresponding to exactly one array dimen-

sion. The elision symbol ":" in such a list prevents the associated array dimension from

being distributed.

Alignments are expressed in a Vienna Fortran program by alignment specifications.

We illustrate their use - together with distribution expressions - by a simple example:
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Example 1 Distribution and Alignment

PARAMETER (M=2)
PROCESSORS R(h:M,1:M)
REAL C(10,10,10) DIST(BLOCK,BLOCK,:) TO R
REAL D(10,10,10) ALIGN D(I,J,K) WITH C(J,I,K)

R denotes a two-dimensional processor array. The distribution of array C is specified by the

distribution expression (BLOCK,BLOCK,:) which indicates that the first two dimensions

are distributed by BLOCK, while the third dimension is not distributed. More precisely,

60 (i, j, k) = { R(Ftl, ri1)} for all k, I < k < 10. The alignment specification for D transposes
the first and second dimensions of C, i.e., the resulting alignment function maps each index

triplet (i, j, k) in ID to the index triplet (j, i, k) in Ic.

2.3 Dynamically Distributed Arrays

The language distinguishes between statically and dynamically distributed arrays, depending

on whether or not the association between an array and its distribution is invariant in a given

scope*. This distinction is made syntactically in the declaration of the array. The arrays

shown in Example 1 were statically distributed.

We define an equivalence relation, connect, in the set of dynamically distributed arrays

within a given scope. This relation satisfies the following conditions:

1. Each equivalence class consists of one distinguished member, the primary array, B,

of the class, and 0 or more secondary arrays. We denote the class associated with

primary array B by C(B).

2. The distribution of each secondary array A E C(B), if any, is defined in the declaration

of A by referring to B in a secondary array annotation, which specifies a connection

by distribution extraction [16] or alignment.

3. Distribute statements are explicitly applied to primary arrays only; their effect is to

redistribute all arrays in the associated equivalence class so that the connection is

maintained.

4. The distributions of arrays in different equivalence classes are independent of each

other.

5. The connect relation does not extend across procedure boundaries.

*ff no ambiguity is possible, we simply refer to static or dynamic distributions.

4



An annotation specifying B 1,..., B, as primary arrays has the form

REAL B.(... .), B2 ( ..... , B,(...) DYNAMIC [,distribution-range] [,initial-distribution]

A distribution range determines the set of all distribution types (or a superset thereof)
which can be associated with the arrays BA during the execution of the procedure in which the

declaration occurs. The distribution range is specified by the keyword RANGE, followed

by a parenthesized list of distribution expressions (see Section 2.2). The "*" can be used as

a "don't care" symbol. Distribute statements applied to the B, must respect the restrictions

imposed by this attribute.

If no distribution range is specified, then there is no restriction on the distributions that

can be associated with a primary array.

An initial distribution is evaluated and associated with each Bi each time the array is

allocated. An array for which an initial distribution has not been specified cannot be legally

accessed before it has been explicitly associated with a distribution by the execution of either

a distribute statement or a procedure call.

A secondary array annotation, for the arrays A,,..., A,, has the form

REAL A,(.......,A.(...) DYNAMIC, CONNECT connection

The connection can be either a distribution extraction [16], or an alignment specification. In

both cases, all secondary arrays Ai are connected to a primary array B. As a result of this

declaration, the A, are entered into the equivalence class C(B).

Example 2 Dynamic array annotations

REAL BI(M) DYNAMIC
REAL B2(N) DYNAMIC, DIST (BLOCK)
REAL B3(N,N), B4(N,N) DYNAMIC, RANGE ((BLOCK, BLOCK),(*,CYCLIC)),

& DIST( BLOCK, CYCLIC)

REAL AI(N,N) DYNAMIC, CONNECT (=B4)
REAL A2(N,N) DYNAMIC, CONNECT A2(I,J) WITH B4(I,J)

All arrays declared here are dynamically distributed; B1 through B4 are primary, Al and

A2 secondary arrays. For B1, no distribution range and no initial distribution are given.

For B2, no distribution range is given, and (BLOCK) is specified as initial distribution.

For B3 and B4, a distribution range as well as an initial distribution are specified. Al is

connected to B4 via distribution extraction while A2 uses an (identity) alignment to specify

the connection. As a consequence, C(B4) ;? {B4, A1, A2}; the connections specified ensure

that the distribution type of Al and A2 will be always the same as that of B4.
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2.4 Distribute Statements

A distribute-statement has the form

DISTRIBUTE B:: da [notransfer-attribute]

where B is an array name associated with a primary array, and da is either a distribution
expression, possibly associated with a processor section, or an alignment specification.

The distribute statement is executed as follows:

First, a set NOTRANSFER is determined as the set of all names specified in the notransfer-

attribute, or the empty set in the default case. All names in

NOTRANSFER must be secondary arrays in C(B).

Secondly, da is evaluated; its result is used to determine a distribution, 6 B, for array B.

Thirdly, for each secondary array A in C(B), its distribution, 6A, is determined from the

distribution type associated with da, 1 A, and the connection between A and B, as established

in the associated secondary array annotation. If A is a member of NOTRANSFER, then

only the access function for A is changed and the elements of the array are not physically

moved.

Example 3 Distribute Statement

We refer to the declarations in the previous example. It is assumed that the statements
below are executed unconditionally in the order of their appearance in the text.

DISTRIBUTE B1:: (BLOCK)

K= expr
DISTRIBUTE B1,B2::(CYCLIC(K))

DISTRIBUTE B3 :: ( BLOCK, CYCLIC)
DISTRIBUTE B4:: (=B1, CYCLIC(3))

In the first statement, the array BI is distributed by (BLOCK).

In the second statement, B1 and B2 (both of which are currently distributed by (BLOCK))

are redistributed as (CYCLIC(k)), where P denotes the value assigned to the variable K
in the assignment K = expr.

The third statement redistributes B3 as (BLOCK, CYCLIC); in the next statement, B4
and the associated secondary arrays Al and A2 are distributed as (CYCLIC(k'), CYCLIC(3)).
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2.5 Control Constructs

The capability to redistribute data at an arbitrary position in a Vienna Fortran program,

including within conditionals, implies that

9 an array reference in the program may, at run-time, be reached by more than one

distribution for the array, and

* the compiler may not be able to determine precisely the set of all distributions reaching

such a reference, no matter how much analysis is performed.

Thus, control-constructs have been included in the language to alleviate the problems

arising from this situation: first, they allow the user to formulate an algorithm, depending

on the actual distribution type of one or more arrays; secondly, they provide the compiler

with information about the distribution of arrays. They include the dcase-construct, which

is modeled after the Fortran 90 CASE construct, and the if-construct, which is based on a
generalized form of logical expressions, and the related Fortran if statements.

2.5.1 The DCASE Construct

The dcase-construct has the form

SELECT DCASE (A 1 ,...,A,)

cap1,... , cap,.n

END SELECT

where

* r > 1 and all A,, 1 < i < r, are array names. The Ai are called selectors. At the

time of execution of the dcase construct, each selector must be allocated and associated
with a well-defined distribution.

* m > 1 and each cap,, 1 < j _< m, is a condition-action-pair, where the condition is

either a query-list or the keyword DEFAULT, and the action is a block. A block is a

sequence of executable-statements, including the statements of the language extension,

except for the distribute statement. None of the statements in a block may be the

target of a branch from outside of that block. It is permissible to branch to an end-

select-statement only from within the dcase construct.

The dcase construct selects at most one of its constituent blocks for execution. It is

evaluated as follows:
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1. The distribution of each selector, and its type, are determined.

2. Let (cl, a,), (c2, a2),.., denote the sequence of condition action pairs in the dcase con-

struct. Then cl, c 2 ,... are sequentially evaluated until either a j, 1 _< j m_ is reached

such that c, matches, or no match occurs.

If ci matches, then the associated action aj is executed. This completes the execution

of the dcase construct. If no match occurs, the execution of the construct is completed

without executing an action.

A condition c. matches iff either ci is the keyword DEFAULT, or ci is a list of queries,

each of which matches. Each query tests the distribution of one selector array. Query

lists may be either positional or name-tagged. In a positional query list, the queries

are associated with the selectors A,, A 2 ,... in this order. In a name-tagged query list, the

selector associated with each query is explicitly specified by a name-tag. The order in which

the queries occur in such a list is semantically irrelevant. A query list need not contain a

query for every selector. In such a case, an implicit "*" is inserted for every selector which

is not represented.

Full details of the matching process are given in [16].

Example 4 The dcase construct

REAL B1(M) DYNAMIC
REAL B2(N) DYNAMIC, DIST (BLOCK)
REAL B3(N,N), DYNAMIC, RANGE ((BLOCKBLOCK),

& (CYCLIC, CYCLIC(*)),(*,CYCLIC)), DIST ( BLOCK, CYCLIC)

SELECT DCASE (B1,B2,B3)
CASE (BLOCK), (BLOCK), (CYCLIC(2), CYCLIC)

a,

CASE BI: (CYCLIC), B3:( BLOCK, *))
a2

CASE B3:( BLOCK, CYCLIC)
a3

CASE DEFAULT
a4

END SELECT

In the following, let tj denote the distribution type associated with Bi.

The first query list is positional; it matches if t1 = t 2 = (BLOCK), and t 3 =

(CYCLIC(2), CYCLIC).
The second list is name-tagged; it matches if tj = (CYCLIC), t 3 = (BLOCK, t'), where

t' is arbitrary, and t 2 is any distribution type.
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The third query list matches if t3 = (BLOCK, CYCLIC). t1 ,t 2 are irrelevant in this case.

Finally, the fourth query list is always matched. Thus, if none of the first four query lists

match, then a4 will be executed.

2.5.2 The IF Construct

The if-construct of Vienna Fortran is based upon a generalized logical expression, which

is a Fortran logicaL ezpression that in addition may contain references to the intrinsic function

IDT. This function performs a test of the distribution types associated with their arguments

and, optionally, of the processor sections to which the arguments are distributed; it yields a

logical value. For example, the second clause in the dcase construct above can be explicitly

expressed as

IF (IDT(BI,( CYCLIC))) .AND. (IDT(B3,( BLOCK(*)))) THEN
a2

3 Implementation

In this section, we briefly describe, at an abstract level, the support for dynamic data dis-

tributions in the Vienna Fortran Compiler System (VFCS). More details of the compilation

strategy used in VFCS are given in [7, 17]. Some of the issues discussed here are also being

handled in other systems [1, 2, 8, 14].

The feat~ures required to manage dynamic data distribution comprise both compile time

and run time elements. Most of these features are actually required to handle other aspects

of Vienna Fortran: in particular, many of the problems posed by run time redistribution of
data structures are the same as, or similar to, those posed by the redistribution of arrays at

subroutine boundaries, and those posed by the fact that in any code, several arrays, with

possibly distinct distributions, may be bound to the same formal argument of a subroutine.

3.1 Compiler Support

There are two major phases in the compiler: analysis and code generation. The most

important task in the analysis phase is solving the reaching distribution problem: that is,

the compiler must determine the range of distribution types which may reach a specific
array access in the code, by intra- and inter-procedural analysis. This is performed both for

declared (and explicitly distributed) arrays as well as for formal subroutine arguments. The
system constructs pairs consisting of a distribution type and a target processor array. We

call the set of all such pairs which is valid for a specific array at a specific position in the
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program the set of plausible distributions. The information computed may not be precise,

since some of the distributions may not actually be assumed at run time. If the full code is

not available, the compiler will have to rely on range specifications provided by the user, or

make worst case assumptions.

An extensive communication analysis provides not only information on the communica-

tion associated with each plausible distribution for an array, but also the memory require-

ments of the array under that distribution. The details of this analysis are outside the scope

of this paper.

The compiler also performs a partial evaluation of distribution queries (both IDT and

the dcase construct), by checking whether there is a plausible distribution which will match.

The compiler must perform many related tasks during during code generation. In par-

ticular, it generates code to create and maintain data structures describing the distributions

and other attributes of arrays, such as the associated overlap areas. The compiler also in-

serts calls to run time routines to perform communication as necessary and to routines which

perform the redistribution of data.

3.2 Run Time Support

The run time support required may be described as the Vienna Fortran Engine (VFE),

an abstract machine that executes Vienna Fortran object programs. VFE is a machine at

a higher level of abstraction than the vendor-supplied hardware/operating system interface.

It is realized by a set of run time libraries which provide the required functionality on a

specific target architecture. In particular, these provide complex data organization and

access schemes, and high-level operations:

"* The memory management scheme of the VFE is inherently dynamic. Even without

dynamnic distributions, the actual allocation of an array to the processors' memories

may not be known. Redistribution requires, in addition, the possibility of reallocation.

"• The data organization and access features provided by the VFE include:

1. Data access functions for Vienna Fortran distributions (including the implementa-

tion of irregular accesses via translation tables and sophisticated buffering schemes

for accesses to non-local objects, as implemented in the PARTI routines [15]).

2. An interface for external distribution generators and specifiers.

3. Run time optimization of communication related to dynamic array references.
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" A run time library of communication routines for transferring single array elements

and array sections, including specialized routines for handling reductions.

" Routines to perform the tasks associated with DISTRIBUTE, construct access func-

tions, to modify descriptors associated with arrays (this information may be modified

when the distribution is changed, or on entry to a subroutine), and test information

stored in these as required for the implementation of IDT and the dcase construct.

3.2.1 Run-Time Representation of Arrays

Some of the relevant components of the information related to an array stored locally in

each processor are the data structures and access functions listed below. Here, A denotes an

array name, and p a processor.

Data Structures:

"* index-dom(A) specifies the index domain of A.

"* dist(A) characterizes the distribution of A, which includes a distribution type, and a

specification of the target processors. For certain complex distributions, a pointer to

a translation table is requiredt.

"* connecLclass(A) determines the set of secondary arrays connected to a primary array.

"* alignment(C) specifies, for each array C in connect-class(A), the alignment of C with

respect to A.

"* For every i such that A (i) is owned by processor p, loc-map. (i) specifies the offset of

A(i) in the local memory of processor p.

"* For regular and irregular BLOCK distributions, segmeni- specifies the sequence of the

local lower and upper bounds in each dimension.

Access Functions

* Access in processor p to local array element A(i) is performed by evaluating loc.mapp 1).

"* Access in processor p to a non-local array element A(i) is performed by determining a

processor q owning A(i) from dist(A), and inserting message passing operations that

send the required element from q to p.

tFor dummy arguments, the description may include a pointer to another array representation and/or

sectioning operations.
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3.2.2 Implementation of DISTRIBUTE

Consider the statement

DISTRIBUTE B:: da [notransfer-attribute]

where da is a distribution expression or an alignment specification, and the notransfer-

attribute determines the set NOTRANSFER={C1 ,... , C,} (see Section 2.4). The realiza-

tion of this statement is handled by a run-time routine executed on each processor which is

passed the array and its current set of descriptors aad returns new descriptors. Each pro-

cessor determines the new locations of current local data, sends it to the nev locations, and

receives data from other processors. Data motion is suppressed where data flow analysis, or

a NOTRANSFER specification, permits.

This corresponds to executing the following sequence of steps on each processor:

"* Step 1: Evaluate the new distribution and the associated access functions

1. Evaluate the new distribution: dist(B):= eval(da)

2. Determine the functions loc.map and segment from dist(B)

"* Step 2: Determine the distributions of the arrays connected to B:

for every C E connect-class(B) - {B} do

dist(C):= CONSTRUCT(alignment(C), 6 B)

endfor

Here, the application of the function CONSTRUCT to the alignment function associ-

ated with C and the new distribution of B yields the new distribution of C.

"• Step 3: Communicate

for every C such that (C E connect-class(B) - NOTRANSFER) A (the previous

distribution of C is old.dist(C)) do

COMMUNICA TE(C,old.dist(C) ,dist(C))

endfor
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PARAMETER (NX = 100, NY = 100)

REAL U(NX, NY), F(NX, NY) DIST(:, BLOCK)
REAL V(NX, NY) DYNAMIC, RANGE( (:, BLOCK), ( BLOCK, :)),

& DIST (:, BLOCK)

CALL RESID( V, U, F, NX, NY)

C Sweep over x-lines
DO J = 1, NY

CALL TRIDIAG( V(:, J), NX)
ENDDO

DISTRIBUTE V:: (BLOCK,:)

C Sweep over y-lines
DO I= 1, NX

CALL TRIDIAG( V(I, :), NY)
ENDDO

Figure 1: ADI iteration in Vienna Fortran

4 Applications

In this section, we discuss the benefits of dynamic distribution of data for scientific codes.

We present several examples in which using dynamic data distributions allows the user to

choose the appropriate data distribution based on the runtime behavior of the program.

Consider first the case in which a runtime value determines the choice of the best distri-
bution. For example, in a grid based computation, such as smoothing, the value at a grid

point is based on its 4 nearest neighbors. A column distribution of the N x N grid will give

rise to 2 messages per processor, each of size N, per computation step. On the other hand,

if the grid is distributed by blocks in two dimensions across a p2 processor array, then each

computation step requires 4 messages of size N/p each on each processor. Thus, given the

startup overhead and cost per byte of each message of the target machine, the ratio N/p will

determine the most appropriate distribution. If the code has been written such that the size

of the grid is an input parameter, then the user can use the dynamic distribution facilities

of Vienna Fortran to set the distribution of the grid$.

Another class of codes which can benefit from dynamic distributions are codes which

exhibit different data access patterns in different phases of the program. Dynamic data

$Vienna Fortran supports an intrinsic function $NP which returns the number of processors being used
to execute the program and can be used to compute the ratio N/p.
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distributions can be used to control the locality of data access in such codes. For example,

consider ADI (Alternating Direction Implicit) codes [11] used for solving partial differential

equations in computational fluid dynamics and other areas of computational physics. The

name ADI derives from the fact that "implicit" equations, usually tridiagonal systems, are

solved in both the x and y directions at each step. In terms of data structure access, one

step of the algorithm can be described as follows: an operation (a tridiagonal solve here)

is performed independently on each x-line of the array and the same operation is then

performed, again independently, on each y-line of the array. The tridiagonal solve has a

recurrence and thus generates data dependencies along the columns in the first phase and

along the rows in the second phase.

There are two broad choices in such situations [4]. We could choose a single distribution

for the whole program so that data accesses are satisfied locally in one phase while paying

the communication costs in the other phase. On the other hand, we could dynamically

redistribute the data so that data accesses in all phases are satisfied locally.

In Figure 1, we present a Vienna Fortran code fragment which employs the latter strategy.

The tridiagonal solves are performed by a sequential routine TRIDIAG (not shown here)

which is given a right hand side and overwrites it with the solution of a constant coefficient

tridiagonal system. The array V is declared as DYNAMIC and is initially distributed by

block in the second dimension. Thus, in the first loop which performs the sweep over columns

(representing x-lines), each column is local to a processor and causes no communication.

The array is then explicitly remapped to be distributed by block in the first dimension. This

allows the second loop, a sweep over y-lines, to also be executed without any communication.

Thus, all the communication is confined to the redistribution operation, with only local

accesses during the computation.

If the array is not explicitly redistributed between the two loops, then the argument to

the second call to TRIDIAG is distributed across a set of processors and it becomes the

responsibility of the compiler to embed the required communication in the generated code.

The efficiency of the resulting code will depend on various factors including, in particular, the

analysis capabilities of the compiler. The dynamic distribution facilities of Vienna Fortran

make it easy for the user to restrict the communication to the redistribution operation which,

at least in the above code, can be implemented by an efficient pre-compiled routine.

For the examples given above it is possible to write the code without using explicit

redistribution statements. For example, one could declare two or more arrays with different

static distribution and use array assignments to produce the effect of redistribution. This

approach, clearly, wastes storage space since only one of the arrays would be fruitfully used

in any single computation phase.
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Another approach is to use procedure boundaries for implicit redistribution of data.
Vienna Fortran allows procedure arguments to be declared with a specific distribution. When
the procedure is called, it is the compiler's responsibility to redistribute the actual argument
to match the specified distribution. Thus, the ADI example could be rewritten such that it
calls a different subroutine in the second loop, one which specifically declares its argument to

be distributed by block in the first dimension. Similarly, the grid example could be written

such that a different subroutine is called, depending on the ratio of the size of the grid and
the number of executing processors. The problem, however, is that this approach may lead

to an explosion of subroutines which are different only in the distribution specified for their

arguments.

Another problem with using either assignment or procedure boundaries for implicit redis-
tribution is that the approaches are particularly awkward and cumbersome to use if there is

an outer iterative loop around the phases requiring redistribution. Further, it is not always

feasible to write a program such that distributions change only at procedure boundaries.
For example, in applications such as adaptive mesh codes or particle-in-cell (PIC) codes, the

work distribution changes as the computation progresses. In such codes, the data needs to

be redistributed dynamically in order to rebalance the workload.

Consider a simulation code based on the particle-in-cell method, which can be used to
study the motion of particles in a given domain, such as plasmas for controlled nuclear

fusion, or stars and galaxies. The computation at each time step can be divided into two
phases. In the first phase, a global force field is computed using the current position of

particles. In the second phase, given the new global force field, new positions of the particles

are computed. The program can be structured by dividing the underlying domain into cells
with each cell owning a set of particles. The particles move from one cell to another as they

change p M1tions across the domain. Since the computation in each cell is dependent on the
number of particles in the cell, the workload across the domain changes as the computation

progresses.

Figure 2 shows the outermost level of a simplified version of a PIC code as expressed in
Vienna Fortran. The code omits details irrelevant to the discussion here. In this code, the

cells are represented by the first dimension of the array FIELD. There are a maximum of
NCELL cells and each cell is restricted to have a maximum of NPART particles.

The main goal here is to distribute the cells across the processors such that the work per
processor is approximately equal. In this code, we use the generalized block distribution to

distribute the cells in irregular (but contiguous) blocks to the processors. The block sizes
(i.e., the number of contiguous cells) are selected so that each processor has roughly the

same number of particles on its local part of the domain.
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PARAMETER (NCELL = ... , NPART =

INTEGER BOUNDS(SNP)
REAL FIELD(NCELL, NPART, ...) DYNAMIC, DIST ( BLOCK,:,-)

C Compute initial position of particles
CALL initpos(FIELD, NCELL, NPART, ... )

C Compute initial partition of cells
CALL balance(BOUNDS, FIELD, NCELL, NPART, ...)
DISTRIBUTE FIELD :: B&BLOCK (BOUNDS)

DO k = 1, MAX-TIME
C Compute new field

CALL update-field(FIELD, NCELL, NPART, ... )
C Compute new particle positions and reassign them

CALL update-part(FIELD, NCELL, NPART, ... )

C Rebalance every 10th iteration if necessary
IF (MOD (k,10). EQ. 0. AND. rebalanceo ) THEN

CALL balance(BOUNDS, FIELD, NCELL, NPART, ...)
DISTRIBUTE FIELD:: B-BLOCK (BOUNDS)

ENDIF

ENDDO

Figure 2: High level PIC code in Vienna Fortran

The array FIELD is declared to be DYNAMIC with the first dimension initially dis-

tributed into regular blocks. The procedure initpos determines the initial position of the
particles and places them in the appropriate cells. Using the number of particles in each cell,

the procedure balance computes the block sizes to be assigned to each processor. It stores

these in the array BOUNDS, which is then used to redistribute the array FIELD via the the

intrinsic distribution function BBLOCK).

In each time step (represented by one iteration of the outer loop), the procedure up-

date-field computes the new force field based on the current particle positions. Then, the

procedure update-part is called to update the positions of the particles. Based on the new

positions, the new owner cell for each particle is determined. If a particle has moved from

one cell to another, it is explicitly reassigned. This obviously requires communication if the

new cell is on a different processor. Since this communication is based on the locations of

the current and the new cell, it is highly irregular in nature. Thus, the compiler will have

to generate runtime code using the inspector/executor paradigm [10, 15] to support this

particle motion.
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If the number of particles on each processor remains roughly equal for the duration of

the simulation, then load balance will be maintained. Some problems of this kind display

sufficient uniformity such that a simple block distribution will suffice to provide a reasonable

load balance. For other. problems, the motion of particles during the simulation may lead

to a severe load imbalance. The code, as shown here, checks on every 10th iteration (by

calling function rebalance) whether rebalancing is required. If so, a new BOUNDS array is

computed and the cells redistributed to balance the workload.

The redistribution needed for such load balancing is based on the current values of some

data structure, for example, in the above case it is based on the number of particles per

cell. Thus, this kind of redistribution cannot be expressed using either array assignment or

procedure boundaries and requires language support for dynamic distributions.

5 Related Work

Kali [12] was the first language to introduce dynamic data distribution in a data parallel

language aimed at distributed memory machines. It provided indirect mapping and user

defined distribution functions which could depend on runtime values. A distribute statement

allowed the user to dynamically change the distribution of an array at runtime. The design

of Kali has greatly influenced the development of Vienna Fortran.

The DINO language, which extends C by constructs for specifying virtual processors to

which data may be mapped, and whose compiler is targeted to distributed memory com-

puters, supports redistribution of data at procedure boundaries, but does not extend these

mechanisms to handle other forms of user-specified run-time distribution ([14]).

An executable DISTRIBUTE statement which performed run-time redistribution of ar-

rays was formulated by Marc Baber and implemented in his Hypertasking compiler for block

distributions of arrays; the system attempted to optimize the communication required for

redistribution. This system did not permit procedure calls with distributed data. It has

been implemented on the Intel iPSC hypercubes [2].

The Fortran D language proposal [6] suggests a set of features for enabling the portable

specification of code to run on a variety of parallel architectures, including a dynamic DIS-

TRIBUTE statement. Fortran D does not, however, provide a means for static distribution

of arrays, and does not include any additional constructs which might enable the user to

control or structure the use of dynamic distributions. As far as we are aware, the Fortran D

implementation does not yet provide for dynamic data distributions.

The High Performance Fortran proposal [9] includes static and dynamic distributions in

much the same way that Vienna Fortran does and has included a small set of distribution
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queries in the language constructs. It has REALIGN and REDISTRIBUTE directives to

permit independent redistribution and realignment of arrays during execution. These are

both subsumed by the DISTRIBUTE statement in Vienna Fortran. In contrast to Vienna

Fortran, if an array is redistributed in a procedure, HPF does not permit the new distribution

to be returned to the calling procedure.

6 Conclusions

Dynamic data distributions are essential for a variety of real applications, which are char-

acterized by large variations in the size or structure of input data sets, the need to perform

dynamic load balancing, or the necessity to execute the code on several different architec-

tures or different configurations of one machine. In all these cases, the decision on how to

map the data arrays to the executing processors might have to be deferred until run time.

However, the deferment of such decisions makes it difficult for the compiler to generate

efficient code. This problem can be alleviated by a combination of enhanced language sup-

port, extensive intra- and inter-procedural compiler analysis, and careful structuring of the

program by the user so that in all critical code sections the distribution is known at compile

time.
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